描述
內容簡介
|
作者簡介
| 李永華
北京郵電大學信息與通信工程學院教授、博士生導師,擁有超過15年的嵌入式開發經驗。長期致力於物聯網、雲計算與大數據的教學與科研工作。在教學中善於以興趣為導向激發學生的創造性,以素質為基礎提高自身的教學水平,以科研為手段促進教學理念的轉變。在教學與科研實踐中,先後指導學生實現500個創新案例,參與了30餘項國家級與企業橫向課題的研究工作,在國內外學術期刊及學術會議發表論文100餘篇,申請專利40餘項,出版教材40餘部。 |
目錄
| ▌第1 章 美食推薦
1.1 整體設計 1.1.1 整體框架 1.1.2 系統流程 1.2 開發環境 1.2.1 安裝PyCharm 1.2.2 環境配置 1.2.3 建立專案 1.2.4 大模型API 申請 1.3 系統實現 1.3.1 頭部<head> 1.3.2 背景樣式<back> 1.3.3 主體<body> 1.3.4 App.py 指令稿 1.3.5 random_food.py 指令稿 1.4 功能測試 1.4.1 執行專案 1.4.2 發送問題及回應 1.4.3 美食軟體網頁版跳躍
▌第2 章 語言學習 2.1 整體設計 2.1.1 整體框架 2.1.2 系統流程 2.2 開發環境 2.2.1 安裝VS Code 2.2.2 安裝Node.js 2.2.3 安裝pnpm 2.2.4 環境配置 2.2.5 建立專案 2.2.6 大模型API 申請 2.3 系統實現 2.3.1 頭部<head> 2.3.2 樣式<style> 2.3.3 主體<body> 2.3.4 main.js 指令稿 2.4 功能測試 2.4.1 執行專案 2.4.2 發送問題及回應
▌第3 章 生成戲文 3.1 整體設計 3.1.1 整體框架 3.1.2 系統流程 3.2 開發環境 3.2.1 安裝VS Code 3.2.2 安裝Node.js 3.2.3 環境配置 3.2.4 大模型API 申請 3.3 系統實現 3.3.1 頭部<head> 3.3.2 樣式<style> 3.3.3 主體<body> 3.3.4 主體<body> 指令稿 3.3.5 其他介面設計 3.4 功能測試 3.4.1 執行專案 3.4.2 發送問題及回應
▌第4 章 智慧電影 4.1 整體設計 4.1.1 整體框架 4.1.2 系統流程 4.2 開發環境 4.2.1 安裝PyCharm 4.2.2 安裝Python 4.2.3 軟體套件 4.2.4 建立專案 4.2.5 大模型API 申請 4.3 系統實現 4.3.1 主函式Main 4.3.2 推薦演算法 4.3.3 呼叫大模型 4.3.4 主體及GUI 介面 4.4 功能測試 4.4.1 執行專案 4.4.2 發送問題及回應
▌第5 章 影像處理 5.1 整體設計 5.1.1 整體框架 5.1.2 系統流程 5.2 開發環境 5.2.1 安裝PyQt5 5.2.2 環境配置 5.2.3 大模型API 申請 5.3 系統實現 5.3.1 PyQt5 組件初始化與綁定機制 5.3.2 PyQt5 槽函式的定義 5.3.3 主函式 5.4 功能測試 5.4.1 影像處理功能測試 5.4.2 影像生成功能測試
▌第6 章 職業匹配 6.1 整體設計 6.1.1 整體框架 6.1.2 系統流程 6.2 開發環境 6.2.1 安裝Anaconda 6.2.2 建立Git 6.2.3 安裝Streamlit 6.2.4 LangChain 的安裝與使用 6.2.5 環境配置 6.2.6 建立專案 6.2.7 大模型API 申請 6.3 系統實現 6.3.1 PDF 讀取剩餘區塊 6.3.2 樣式<style> 6.3.3 模型互動 6.3.4 主程式邏輯 6.4 功能測試 6.4.1 執行專案 6.4.2 發送問題及回應
▌第7 章 生成履歷 7.1 整體設計 7.1.1 整體框架 7.1.2 系統流程 7.2 開發環境 7.2.1 安裝Node.js 7.2.2 安裝pnpm 7.2.3 環境配置 7.2.4 建立專案 7.2.5 大模型API 申請 7.3 系統實現 7.3.1 頭部<head> 7.3.2 樣式<style> 7.3.3 主體<body> 7.3.4 main.js 指令稿 7.4 功能測試 7.4.1 執行專案 7.4.2 發送問題及回應
▌第8 章 產品推薦 8.1 整體設計 8.1.1 整體框架 8.1.2 系統流程 8.2 開發環境 8.2.1 安裝PyCharm 8.2.2 環境配置 8.2.3 大模型API 申請 8.3 系統實現 8.3.1 頭部<head> 8.3.2 樣式<style> 8.3.3 主體<body> 8.3.4 App.py 8.4 功能測試 8.4.1 執行專案 8.4.2 發送問題及回應
▌第9 章 重生之水滸穿越 9.1 整體設計 9.1.1 整體框架 9.1.2 系統流程 9.2 開發環境 9.2.1 安裝Python 9.2.2 安裝Anaconda 9.2.3 環境配置 9.2.4 大模型API 申請 9.3 系統實現 9.3.1 main.py 9.3.2 utils.py 9.4 功能測試 9.4.1 執行專案 9.4.2 發送問題及回應
▌第10 章 小說創作 10.1 整體設計 10.1.1 整體框架 10.1.2 系統流程 10.2 開發環境 10.2.1 安裝Python 10.2.2 安裝PyCharm 10.2.3 環境配置 10.2.4 建立專案 10.2.5 大模型API 申請 10.3 系統實現 10.3.1 頭部引入 10.3.2 關鍵函式 10.3.3 視窗實現 10.3.4 Spark API 10.4 功能測試 10.4.1 執行專案 10.4.2 發送問題及回應
▌第11 章 情緒分析 11.1 整體設計 11.1.1 整體框架 11.1.2 系統流程 11.2 開發環境 11.2.1 安裝Anaconda 11.2.2 安裝Tkinter 和OpenAI 函式庫 11.2.3 編輯器環境配置 11.2.4 大模型API 申請 11.3 系統實現 11.3.1 guitest.ipynb 11.3.2 omgtest.ipynb 11.3.3 omgloop.ipynb 11.3.4 main.py 11.4 功能測試 11.4.1 執行專案 11.4.2 發送問題及回應
▌第12 章 文字轉影像 12.1 整體設計 12.1.1 整體框架 12.1.2 系統流程 12.2 開發環境 12.2.1 安裝Python 12.2.2 安裝PyCharm 12.2.3 安裝PyWebIO 函式庫 12.2.4 大模型API 申請 12.3 系統實現 12.3.1 獲得驗證參數 12.3.2 主程式 12.4 功能測試 12.4.1 執行專案 12.4.2 發送問題及回應
▌第13 章 足球資訊 13.1 整體設計 13.1.1 整體框架 13.1.2 系統流程 13.2 開發環境 13.2.1 安裝Python 函式庫 13.2.2 大模型API 申請 13.3 系統實現 13.3.1 soccerhelper.py 13.3.2 mainWindow.py 13.3.3 SparkAPI.py 13.4 功能測試 13.4.1 執行專案 13.4.2 發送問題及回應
▌第14 章 圖書館檢索 14.1 整體設計 14.1.1 整體框架 14.1.2 系統流程 14.2 開發環境 14.2.1 安裝PyCharm 14.2.2 建立Python 虛擬環境 14.2.3 安裝資料庫 14.2.4 建立專案 14.2.5 大模型API 申請 14.3 系統實現 14.3.1 前端HTML 檔案 14.3.2 視圖檔案views.py 14.4 功能測試 14.4.1 成果展示 14.4.2 後端日誌監控 14.4.3 大模型API 呼叫情況
▌第15 章 音色轉換 15.1 整體設計 15.1.1 整體框架 15.1.2 系統流程 15.2 開發環境 15.2.1 配置PyCharm 解譯器 15.2.2 安裝Python 套件 15.2.3 環境配置 15.2.4 大模型API 申請 15.3 系統實現 15.3.1 視窗設計 15.3.2 呼叫音色轉換 15.3.3 檔案格式轉換 15.3.4 視窗前端和後端業務邏輯連接 15.4 功能測試 15.4.1 執行專案 15.4.2 專案輸出
▌第16 章 智慧換臉 16.1 整體設計 16.1.1 整體框架 16.1.2 系統流程 16.2 開發環境 16.2.1 安裝Python 函式庫 16.2.2 建立專案 16.2.3 大模型API 申請 16.3 系統實現 16.3.1 主介面類別DisplayWindow 16.3.2 子介面SecondWindow 16.3.3 子介面ThirdWindow 16.3.4 子介面ForthWindow 類別 16.3.5 執行緒類別VideoThread 16.3.6 執行緒類別APICaller 16.3.7 執行緒類別MonitorThread 16.3.8 其他類別FolderHandler 16.3.9 requests.py 檔案 16.4 功能測試 16.4.1 執行專案 16.4.2 拍照 16.4.3 選擇本地影像 16.4.4 搜尋目標人臉 16.4.5 換臉
▌第17 章 留學文書 17.1 整體設計 17.1.1 整體框架 17.1.2 系統流程 17.2 開發環境 17.2.1 安裝Node.js 17.2.2 安裝Vue.js 17.2.3 大模型API 申請 17.3 系統實現 17.3.1 API.js 17.3.2 headBar.vue 17.3.3 index.vue 17.3.4 App.vue 17.4 功能測試 17.4.1 執行專案 17.4.2 發送問題及回應
▌第18 章 寵物幫手 18.1 整體設計 18.1.1 整體框架 18.1.2 系統流程 18.2 開發環境 18.2.1 安裝Node.js 18.2.2 安裝pnpm 18.2.3 環境配置 18.2.4 建立專案 18.2.5 大模型API 申請 18.3 系統實現 18.3.1 頭部<head> 18.3.2 樣式style.css 18.3.3 樣式one.css 18.3.4 主體<body> 18.3.5 其餘檔案的主體<body> 18.3.6 main.js 指令稿 18.4 功能測試 18.4.1 執行專案 18.4.2 發送問題及回應
▌第19 章 使用者評價 19.1 整體設計 19.1.1 整體框架 19.1.2 系統流程 19.2 開發環境 19.2.1 安裝PyCharm 19.2.2 安裝urllib 19.2.3 環境配置 19.2.4 建立專案 19.3 系統實現 19.3.1 匯入執行函式庫 19.3.2 獲得Stoken 19.3.3 獲得回答 19.3.4 主函式 19.4 功能測試 19.4.1 執行專案 19.4.2 發送問題及回應
▌第20 章 旅遊圖鑑 20.1 整體設計 20.1.1 整體框架 20.1.2 系統流程 20.2 開發環境 20.2.1 安裝Node.js 20.2.2 安裝pnpm 20.2.3 環境配置 20.2.4 建立專案 20.2.5 大模型API 申請 20.3 系統實現 20.3.1 頭部<head> 20.3.2 樣式<style> 20.3.3 主體<body> 20.3.4 main.js 指令稿 20.4 功能測試 20.4.1 執行專案 20.4.2 發送問題及回應
▌第21 章 文案助手 21.1 整體設計 21.1.1 整體框架 21.1.2 系統流程 21.2 開發環境 21.2.1 安裝Python 21.2.2 安裝PyCharm 21.2.3 安裝PyWebIO 函式庫 21.2.4 大模型API 申請 21.3 系統實現 21.3.1 主程式 21.3.2 API 通訊 21.4 功能測試 21.4.1 執行專案 21.4.2 發送問題及回應
▌第22 章 食譜推薦 22.1 整體設計 22.1.1 整體框架 22.1.2 系統流程 22.2 開發環境 22.2.1 安裝Node.js 22.2.2 安裝pnpm 22.2.3 環境配置 22.2.4 建立專案 22.2.5 大模型API 申請 22.3 系統實現 22.3.1 頭部<head> 22.3.2 樣式<style> 22.3.3 主體<body> 22.3.4 main.js 指令稿 22.4 功能測試 22.4.1 執行專案 22.4.2 發送問題及回應
▌第23 章 文字糾錯 23.1 整體設計 23.1.1 整體框架 23.1.2 系統流程 23.2 開發環境 23.2.1 安裝Node.js 23.2.2 安裝pnpm 23.2.3 環境配置 23.2.4 建立專案 23.2.5 大模型API 申請 23.3 系統實現 23.3.1 頭部<head> 23.3.2 樣式<style> 23.3.3 主體<body> 23.3.4 main.js 指令稿 23.4 功能測試 23.4.1 執行專案 23.4.2 發送問題及回應
▌第24 章 網球運動員 24.1 整體設計 24.1.1 整體框架 24.1.2 系統流程 24.2 開發環境 24.2.1 安裝Python 24.2.2 安裝PyCharm 24.2.3 環境配置 24.2.4 大模型API 申請 24.3 系統實現 24.3.1 頭部<head> 24.3.2 樣式<style> 24.3.3 主體<body> 24.3.4 main.py 指令稿 24.4 功能測試 24.4.1 執行專案 24.4.2 發送問題及回應
▌第25 章 職業推薦 25.1 整體設計 25.1.1 整體框架 25.1.2 系統流程 25.2 開發環境 25.2.1 安裝PyCharm 25.2.2 大模型API 申請 25.3 系統實現 25.3.1 頭部<head> 25.3.2 樣式<style> 25.3.3 主體<body> 25.3.4 App.py 25.4 功能測試 25.4.1 執行專案 25.4.2 發送問題及回應
▌第26 章 職場助手 26.1 整體設計 26.1.1 整體框架 26.1.2 系統流程 26.2 開發環境 26.2.1 安裝微信開發者工具 26.2.2 安裝MySQL 26.2.3 安裝Navicat 26.2.4 環境配置 26.2.5 專案啟動 26.2.6 大模型API 申請 26.3 系統實現 26.3.1 小程式全域配置 26.3.2 spark 26.3.3 user 26.3.4 後端伺服器 26.4 功能測試 26.4.1 發送問題及回應 26.4.2 查詢歷史記錄
▌第27 章 手繪圖像辨識 27.1 整體設計 27.1.1 整體框架 27.1.2 系統流程 27.2 開發環境 27.2.1 安裝微信開發者工具 27.2.2 安裝偵錯基礎函式庫 27.2.3 大模型API 申請 27.3 系統實現 27.3.1 畫板組件 27.3.2 主介面的.js 檔案 27.3.3 .wxml 檔案和.wxss 檔案 27.4 功能測試 27.4.1 執行專案 27.4.2 繪製影像獲得回答
▌第28 章 文獻閱讀 28.1 整體設計 28.1.1 整體框架 28.1.2 系統流程 28.2 開發環境 28.2.1 配置伺服器端 28.2.2 環境配置 28.2.3 大模型API 申請 28.3 系統實現 28.3.1 前端程式 28.3.2 後端程式 28.4 功能測試
▌第29 章 法律諮詢 29.1 整體設計 29.1.1 整體框架 29.1.2 系統流程 29.2 開發環境 29.2.1 安裝微信開發者工具 29.2.2 大模型API 申請 29.3 系統實現 29.3.1 index.js 29.3.2 index.wxml 29.3.3 index.wxss 29.3.4 hotline.wxml 29.3.5 hotline.wxss 29.3.6 consult.js 29.3.7 consult.wxml 29.3.8 consult.wxss 29.3.9 lawfirm.js 29.3.10 lawfirm.wxml 29.3.11 lawfirm.wxss 29.3.12 App.js 29.3.13 App.json 29.3.14 App.wxss 29.3.15 Project.config.json 29.4 功能測試 29.4.1 執行專案 29.4.2 發送問題及回應
▌第30 章 文風模擬 30.1 整體設計 30.1.1 整體框架 30.1.2 系統流程 30.2 開發環境 30.2.1 安裝Python 30.2.2 安裝函式庫和模組 30.2.3 建立專案 30.2.4 大模型API 申請 30.3 系統實現 30.3.1 匯入模組和初始化 30.3.2 建立文字標籤及文風選擇 30.3.3 設置按鈕樣式及模型版本 30.3.4 執行Tkinter 主迴圈 30.4 功能測試 30.4.1 執行專案 30.4.2 發送問題及回應 |
序
| 前言
大模型是大語言模型(Large Language Model)的簡稱。大模型主要指具有數十億甚至上百億參數的深度學習模型,具備大容量、大算力、多參數等特點。大模型由早期的單語言預訓練模型發展至之後的多語言預訓練模型,再到現階段的多模態預訓練模型。隨著人工智慧技術的發展和應用場景的不斷擴大,大模型從最初主要應用於電腦視覺、自然語言處理逐漸應用於醫療、金融、智慧製造等領域,這些領域都需要處理大量的資料,可實現處理多工的目標,由於大模型能夠提供更高效、更精準的解決方案,目前已成為人工智慧領域的重要發展方向之一。 本書的內容和素材主要來源於以下方面:作者所在學校近幾年承擔的教育部和北京市的教育、教學改革專案與成果; 作者指導的所究所學生在物聯網方向的研究工作及成果; 北京郵電大學資訊與通訊工程專業創新實踐。該專業學生透過CDIO 工程教育方法,實現創新研發,不但學到了知識,提高了能力,而且為本書提供了第一手素材和資料,在此向資訊與通訊工程專業的學生表示感謝。 由於作者水準有限,書中難免存在不當之處,敬請讀者不吝指正,以便作者進一步修改和完善。 李永華 |





























