描述
本書特色
機器學習
彩色圖解 + 基礎數學篇 + Python實作
本書特色
這幾年心中總想寫一本可以讓擁有高中數學程度的讀者即可看懂人工智慧、機器學習或深度學習的書籍,或是說看了不會想睡覺的機器學習書籍,這個理念成為我撰寫這本書籍很重要的動力。為了卸除數學心房,筆者撰寫此書依循原則如下:
1:數學原理彩色圖解。
2:手工計算基礎數學。
3:Python程式高效實作。
這本書撰寫的幾個特色如下:
1:全書共用150個Python實例,講解機器學習的基礎數學
2:極詳細、超清楚、帶領讀者從畏懼數學到喜歡數學
3:複雜的數學符號重新拆解,原來可以很容易
4:了解機器學習的數學原理,讓機器學習程式充滿智慧靈魂
在徹底研究機器學習後,筆者體會許多基礎數學不是不會與艱難而是生疏了,如果機器學習的書籍可以將複雜公式從基礎開始一步一步推導,其實可以很容易帶領讀者進入這個領域,同時感受數學不再如此艱澀,這也是我撰寫本書時時提醒自己要留意的事項。
研究機器學習雖然有很多模組可以使用,但是如果不懂相關數學原理,坦白說筆者不會相信未來你在這個領域會有所成就。
這本書講解了下列相關數學的基本知識。
► 資料視覺化使用matplotlib
► 基礎數學模組Math
► 基礎數學模組Sympy
► 數學應用模組Numpy
► 機器學習基本觀念
► 從方程式到函數
► 方程式與機器學習
► 從畢氏定理看機器學習
► 聯立方程式與聯立不等式與機器學習
► 機器學習需要知道的二次函數
► 機器學習的最小平方法
► 機器學習必須知道的集合與機率
► 機率觀念與貝式定理的運用-COVID-19的全民普篩準確性推估
► 筆者講解指數與對數的運算規則,同時驗證這些規則
► 除了講解機器學習很重要的歐拉數(Euler’s Number),更說明歐拉數的由來
► 認識邏輯(logistic)函數與logit函數
► 三角函數
► 大型運算子運算
► 向量、矩陣與線性迴歸
未來相關書籍
這本書是筆者機器學習系列書的起點,未來還將撰寫下列書籍:
機器學習
彩色圖解 + 微積分篇 + Python實作
作者簡介
洪錦魁
一位跨越電腦作業系統與科技時代的電腦專家,著作等身的作家。
■ DOS 時代他的代表作品是 IBM PC 組合語言、C、C++、Pascal、資料結構
■ Windows 時代他的代表作品是 Windows Programming 使用 C、Visual Basic。
■ Internet 時代他的代表作品是網頁設計使用 HTML。
■ 大數據時代他的代表作品是 R 語言邁向 Big Data 之路。
除了作品被翻譯為簡體中文、馬來西亞文外,2000 年作品更被翻譯為MasteringHTML 英文版行銷美國,近年來作品則是在北京清華大學和台灣深智同步發行:
1:Java 入門邁向高手之路王者歸來
2:Python 最強入門邁向頂尖高手之路王者歸來
3:Python 最強入門邁向數據科學之路王者歸來
4:Python 網路爬蟲:大數據擷取、清洗、儲存與分析王者歸來
5:演算法最強彩色圖鑑 + Python 程式實作王者歸來
6:HTML5 + CSS3 王者歸來
7:R 語言邁向Big Data 之路
8:Excel 完整學習邁向最強職場應用王者歸來
他在2019/2020 年許多著作分別登上天瓏、博客來、Momo 電腦書類暢銷排行榜第一名,他的著作最大的特色是不賣弄文字與炫耀知識,所有程式語法會依特性分類,同時以實用的程式範例做解說,讓複雜的知識變的淺顯易懂,讀者可以由他的著作事半功倍輕鬆掌握相關知識。
目錄
目錄
第 1 章 資料視覺化
1-1 認識mapplotlib.pyplot 模組的主要函數
1-2 繪製簡單的折線圖plot( )
1-3 繪製散點圖catter( )
1-4 Numpy 模組
1-5 圖表顯示中文
第 2 章 數學模組Math 和Sympy
2-1 數學模組的變數
2-2 一般函數
2-3 log( ) 函數
2-4 三角函數
2-5 Sympy 模組
第 3 章 機器學習基本觀念
3-1 人工智慧、機器學習、深度學習
3-2 認識機器學習
3-3 機器學習的種類
3-4 機器學習的應用範圍
第 4 章 機器學習的基礎數學
4-1 用數字描繪事物
4-2 變數觀念
4-3 從變數到函數
4-4 等式運算的規則
4-5 代數運算的基本規則
4-6 用數學抽象化開餐廳的生存條件
4-7 基礎數學的結論
第 5 章 認識方程式 / 函數 / 座標圖形
5-1 認識方程式
5-2 方程式文字描述方法
5-3 一元一次方程式
5-4 函數
5-5 座標圖形分析
5-6 將線性函數應用在機器學習
第 6 章 從聯立方程式看機器學習的數學模型
6-1 數學觀念建立連接兩點的直線
6-2 機器學習使用聯立方程式推估數據
6-3 從2條直線的交叉點推估科學數據
6-4 兩條直線垂直交叉
第 7 章 從畢氏定理看機器學習
7-1 驗證畢氏定理
7-2 將畢氏定理應用在性向測試
7-3 將畢氏定理應用在三維空間
7-4 將畢氏定理應用在更高維的空間
7-5 電影分類
第 8 章 聯立不等式與機器學習
8-1 聯立不等式的基本觀念
8-2 聯立不等式的線性規劃
8-3 Python 計算
第 9 章 機器學習需要知道的二次函數
9-1 二次函數的基礎數學
9-2 從一次到二次函數的實務
9-3 認識二次函數的係數
9-4 使用3 個點求解二次函數
9-5 二次函數的配方法
9-6 二次函數與解答區間
第 10 章 機器學習的最小平方法
10-1 最小平方法基本觀念
10-2 簡單的企業實例
10-3 機器學習建立含誤差值的線性方程式
10-4 Numpy 實作最小平方法
10-5 線性迴歸
10-6 實務應用
第 11 章 機器學習必須懂的集合
11-1 使用Python 建立集合
11-2 集合的操作
11-3 子集、宇集與補集
11-4 加入與刪除集合元素
11-5 冪集與Sympy 模組
11-6 笛卡兒積
第 12 章 機器學習必須懂的排列與組合
12-1 排列基本觀念
12-2 有多少條回家路
12-3 排列組合
12-4 階乘的觀念
12-5 重複排列
12-6 組合
第 13 章 機器學習需要認識的機率
13-1 機率基本觀念
13-2 數學機率與統計機率
13-3 事件機率名稱
13-4 事件機率規則
13-5 抽獎的機率 – 加法與乘法綜合應用
13-6 餘事件與乘法的綜合應用
13-7 條件機率
13-8 貝氏定理
13-9 蒙地卡羅模擬
第 14 章 二項式定理
14-1 二項式的定義
14-2 二項式的幾何意義
14-3 二項式展開與規律性分析
14-4 找出xn-kyk 項的係數
14-5 二項式的通式
14-6 二項式到多項式
14-7 二項分佈實驗
14-8 將二項式觀念應用在業務數據分析
14-9 二項式機率分佈Python 實作
第 15 章 指數觀念與指數函數
15-1 認識指數函數
15-2 指數運算的規則
15-3 指數函數的圖形
第 16 章 對數(logarithm)
16-1 認識對數函數
16-2 對數表的功能
16-3 對數運算可以解決指數運算的問題
16-4 認識對數的特性
16-5 對數的運算規則與驗證
第 17 章 歐拉數與邏輯函數
17-1 歐拉數
17-2 邏輯函數
17-3 logit 函數
17-4 邏輯函數的應用
第 18 章 三角函數
18-1 直角三角形的邊長與夾角
18-2 三角函數的定義
18-3 計算三角形的面積
18-4 角度與弧度
18-5 程式處理三角函數
18-6 從單位圓看三角函數
第 19 章 從基礎統計了解大型運算子
19-1 加總消費金額
19-2 計算平均單筆消費金額
19-3 變異數
19-4 標準差
19-5 符號運算規則與驗證
19-6 活用符號
第 20 章 機器學習的向量
20-1 向量的基礎觀念
20-2 向量加法的規則
20-3 向量的長度
20-4 向量方程式
20-5 向量內積
20-6 皮爾遜相關係數
20-7 向量外積
第 21 章 機器學習的矩陣
21-1 矩陣的表達方式
21-2 矩陣相加與相減
21-3 矩陣乘以實數
21-4 矩陣乘法
21-5 方形矩陣
21-6 單位矩陣
21-7 反矩陣
21-8 用反矩陣解聯立方程式
21-9 張量(Tensor)
21-10 轉置矩陣
第 22 章 向量、矩陣與多元線性回歸
22-1 向量應用在線性迴歸
22-2 向量應用在多元線性迴歸
22-3 矩陣應用在多元線性迴歸
22-4 將截距放入矩陣
22-5 簡單的線性迴歸
序
機器學習
彩色圖解 + 基礎數學篇 + Python 實作
序
近幾年每當無法入眠時,只要拿起人工智慧、機器學習或深度學習的書籍,看到複雜的數學公式可以立即進入夢鄉,這些書籍成為我的安眠藥。
心中總想寫一本可以讓擁有高中數學程度即可看懂人工智慧、機器學習或深度學習的書籍,或是說看了不會想睡覺的機器學習書籍,這個理念成為我撰寫這本書籍很重要的動力。
在徹底研究機器學習後,筆者體會許多基礎數學不是不會與艱難而是生疏了,如果機器學習的書籍可以將複雜公式從基礎開始一步一步推導,其實可以很容易帶領讀者進入這個領域,同時感受數學不再如此艱澀,這也是我撰寫本書時時提醒自己要留意的事項。
研究機器學習雖然有很多模組可以使用,但是如果不懂相關數學原理,坦白說筆者不會相信未來你在這個領域會有所成就,這本書講解了下列相關數學的基本知識。
■ 資料視覺化使用 matplotlib
■ 基礎數學模組 Math
■ 基礎數學模組 Sympy
■ 數學應用模組 Numpy
■ 機器學習基本觀念
■ 從方程式到函數
■ 方程式與機器學習
■ 從畢氏定理看機器學習
■ 聯立方程式與聯立不等式與機器學習
■ 機器學習需要知道的二次函數
■ 機器學習的最小平方法
■ 機器學習必須知道的集合與機率
■ 機率觀念與貝式定理的運用 COVID-19 的全民普篩準確性推估
■ 筆者講解指數與對數的運算規則,同時驗證這些規則
■ 除了講解機器學習很重要的歐拉數 (Euler’s Number),更說明歐拉數的由來
■ 認識邏輯 (logistic) 函數與 logit 函數
■ 三角函數
■ 大型運算子運算
■ 向量、矩陣與線性迴歸
寫過許多的電腦書著作,本書沿襲筆者著作的特色,程式實例豐富,相信讀者只要遵循本書內容必定可以在最短時間精通機器學習的基礎數學,編著本書雖力求完美,但是學經歷不足,謬誤難免,尚祈讀者不吝指正。
洪錦魁2020-8-15
jiinkwei@me.com
未來相關書籍
這本書是筆者機器學習系列書的起點,未來還將撰寫下列書籍:
機器學習
彩色圖解 + 微積分篇 + Python 實作
圖書資源說明:本書所有程式檔案
本書籍所有程式可以在深智公司網站下載,書號DM2037 是密碼。
臉書粉絲團
歡迎加入:王者歸來電腦專業圖書系列